Type-directed search with dependent types

Ben Sherman

August 12, 2014

o & E DA
Ben Sherman Type-directed search with dependent types



Overview

@ Type systems

Code & type search

Equality and isomorphism

:search in ldris

Ben Sherman Type-directed search with dependent types August 12, 2014 2 /56



Expressiveness of type systems

Inexpressive . Python
- C
- ML
- Haskell
Expressive - ldris, Agda

Ben Sherman Type-directed search with dependent types August 12, 2014 3 /56



Python

@ Untyped: can't determine anything important statically
@ There are

» Objects: *

» n-ary functions on objects: *" — x

Ben Sherman Type-directed search with dependent types August 12, 2014 4 / 56



“What's the worst a function can do that takes a void * and returns a
void *?”

1 void * id(void * x) {

> strepy((char %) x, "Bye, bye, datal!”);

s strepy((char x) &x, "Bye, bye, stack!”);

4 return (void *) rand();

s }

Ben Sherman Type-directed search with dependent types August 12, 2014 5 /56



ML

“With parametric polymorphism, id can only be one thing!”

1 val id = (fn x => (

> print ”Starting evil ... ”7;
3 (% Doing evil ... )

« print ”Finishing evil ... ”;

s x)) : ("a—>"a);

Ben Sherman Type-directed search with dependent types August 12, 2014 6 /56



Haskell

1id

“In a purely functional language, id can only be one thing!”
a—>a
2 id =id

o & = E DA
Ben Sherman Type-directed search with dependent types



Idris

In a total language, we finally win!
1 total

2id : (a : Type) —>a —>a

3id - x =x

[m] = =

Ben Sherman Type-directed search with dependent types



Programming language power

What you can do

What you can know

Ben Sherman Type-directed search with dependent types August 12, 2014 9 /56



Test-driven development

http://math.stackexchange.com/questions/111440/examples-of-apparent-
patterns-that-eventually-fail?lg=1

Ben Sherman Type-directed search with dependent types August 12, 2014 10 / 56



Termination checking with tests?

The busy beaver function

6
21
107
> 47,176,870
< 1036534

S OB W NN kO

Ben Sherman Type-directed search with dependent types August 12, 2014 11 / 56



Proving map fusion

o & = E DA
Ben Sherman Type-directed search with dependent types



The Curry-Howard correspondence

Haskell

Logic

type variables : a

types : Bool

function types : a —> b

tuples : (a, b)
either : Either a b
type inhabitation :

id

a —>a

proposition variables : p
propositions : “Socrates is a man
implications (implies) : p — g
conjunctions (and) : pA g
disjunctions (or) : pV g

truth: Fp—p

The type is the what. The value is the why.

Ben Sherman Type-directed search with dependent types August 12, 2014

13/ 56



For any positive integers n, x, y and z where n is greater than 2,

x4y £ 2",

Vn,x,y,z € N.

n>2x>0y>0z>0 — x"+y" £ 2"
1 (n, x, y, z: Nat) —

2 n>2—->x>0->y>0—->2>0
3 — Not (x"n 4+ y"n = z"n)

Ben Sherman Type-directed search with dependent types August 12, 2014 14 / 56



Sorting a list

Haskell:
1 sort :: Ord a = [a] — [a]
Idris (my example, > 150 LOC):

1 quickSort : {a : Type} — {less : a — a — Type}

2 — {eq:a— a— Type}

s — TotalOrder less eq

s+ — (xs: List a)

s — Exists (List a) (\ys = (IsSorted less ys, Permutation xs ys))

Ben Sherman Type-directed search with dependent types August 12, 2014 15 / 56



Type-driven development

Types
@ Prove properties stronger than any test can show
@ Are documentation that is never wrong or outdated

@ Provide an exact specification

Ben Sherman Type-directed search with dependent types August 12, 2014 16 / 56



Type-driven development

Ben Sherman Type-directed search with dependent types August 12, 2014



Why code search matters

@ Stand on the shoulders of giants

» Modern software development heavily depends on library re-use

@ Number of libraries increasing drastically

Code size of projects increasing drastically

(Purely) functional programming is the modular solution for scaling to

large systems

Ben Sherman Type-directed search with dependent types August 12, 2014 18 / 56



Search difficulties

o “Haskell stack overflow”, “Go tree”, “Go map”
@ Ord (Haskell) vs. Comparable (Java)

» (In Java, all identifiers must have at least 8 characters?)

Ben Sherman Type-directed search with dependent types August 12, 2014 19 / 56



Search

What's in a name? that which we call a rose

By any other name would smell as sweet;

William Shakespeare, Romeo and Juliet

Ben Sherman Type-directed search with dependent types August 12, 2014 20 / 56



Type-directed search

@ Can choose your name; can't choose your type!
@ Semantics instead of names

@ Tool of choice for type-driven developers

Ben Sherman Type-directed search with dependent types August 12, 2014 21 / 56



Hoogle

@ Type-directed search for Haskell
@ 2000 searches per day (2011)

@ Based on a notion of edit distance

Ben Sherman Type-directed search with dependent types August 12, 2014 22 / 56



Hoogle mutations

Aliases

Instances

Subtyping

“Boxing"

Free variable duplication
Restriction

Argument deletion

Argument reordering

String <— [Char]
Orda=a+—a

Num a = a +— Int

a <— Applicative f = f a
(a, b) «+— (a,a)

m a <— [a]

a—b—o>c+——b—c

Ben Sherman Type-directed search with dependent types August 12, 2014

23 / 56



Distinction without a difference

e Even though a — b — c and (a, b) — c are distinct types, they

“mean the same thing.”
@ When we search one type, we'd like to match both!

@ What can we use to capture this notion?

Ben Sherman Type-directed search with dependent types August 12, 2014 24 / 56



Type isomorphism

Definition

Types A and B are isomorphic if there are functions f : A — B and
g : B — Asuch that (x: A) = (g o f)(x) = x and

(y:B) = (fog)(y) =y, and we write A= B.

Proposition

Isomorphism (=) is an equivalence relation.

(Type equivalence in HoTT)

What does = mean?

Ben Sherman Type-directed search with dependent types August 12, 2014 25 / 56



Notions of equality

@ In Haskell, not all types allow their terms to be compared for equality
(eg. 10 ())

@ In Idris, in order to perform type checking, for any arbitrary type, we

must be able to compare terms of that type for equality!

Ben Sherman Type-directed search with dependent types August 12, 2014 26 / 56



Equality in Idris

o Definitional equality, =, for when terms are “obviously” equal
» Used for type checking

@ Propositional equality
» (=): (x: A) = (v:B) = Type where
» refl @ {A: Type} —» {x: A} - x=x

@ Transport

» replace : a=b —->Pa—>Pb

Ben Sherman Type-directed search with dependent types August 12, 2014 27 / 56



Equality of functions

Axiom of function extensionality:

1 funext : (f, g: a—b) —>((x:a) > fx=gx)—>f=¢g

o & E DA
Ben Sherman Type-directed search with dependent types



Type isomorphism

Proposition
If types A= B, and t : Typet M : Type, then [A/t]M = [B/t]M.

v

Proof.
Suppose we have p : [A/t]M and want q : [B/t]M. Intuitively, when we

need to produce a B in g, we use code from p to make an A and then
map it to B. When we must use a B in a, we map it to A and then use

code from p to use that value. O

V.

Ben Sherman Type-directed search with dependent types August 12, 2014 29 / 56



Type isomorphism

Type isomorphism is similar to set bijection:

Proposition
If there is some n € N such that A and B each have n elements, then A

and B are isomorphic.

Proof.
Construct isomorphisms from A to Fin n and B to Fin n . Since = is an

equivalence relation, A= Fin n = B. [

v

Ben Sherman Type-directed search with dependent types August 12, 2014 30 / 56



Type isomorphism in Haskell

1 A=X—>Y > Z
:B=(X,Y) > Z
3 f = uncurry

4 g = curry

- = = = = 9ace

Ben Sherman Type-directed search with dependent types



Decidability of isomorphism

Proposition

Type isomorphism is undecidable in System F (Haskell) and intuitionistic
type theory (Idris).

Proof.
@ Claim: A type is isomorphic to L if and only if it is uninhabited.

@ Type inhabitation is undecidable in System F and intuitionistic type

theory.
D y
Ben Sherman Type-directed search with dependent types August 12, 2014 32 /56



Another notion of isomorphism

f:A—=B
g:B—>A
i(x:A) = (gof)(x) = x

iy B) = (fog)ly) =y
A>~B

[m] = =

Ben Sherman Type-directed search with dependent types

it
O
)



Isomorphism is not enough!

Suppose we want to compare two values whose type has instance Ord for
equality. We search

1 Ord a = a — a — Bool
We'd like to find
1 (==) : Eqa = a — a — Bool

Its type is strictly more general than what we asked for.

Ben Sherman Type-directed search with dependent types August 12, 2014 34 / 56



Isomorphism is not enough!

1 Ord a = a — a — Bool
If we take this too far, though, results may not be useful:
1 const (const True) :: a — a — Bool

Too general!

Ben Sherman Type-directed search with dependent types August 12, 2014 35/ 56



Type containment

We want a partial order > that defines isomorphism: that is,
If A= B and B = A, then A= B.

Ben Sherman Type-directed search with dependent types August 12, 2014 36 / 56



A first pass at type containment

Definition
Type A covers B if there is a subset A’ C A and functions f : A’ — B and
g: B — A such that gof =ids and f o g = idg, and we write A = B.

Ben Sherman Type-directed search with dependent types August 12, 2014 37 / 56



Proposition

IfA> B and B~ A, then A= B.

Proof.

Mpyhill isomorphism theorem?

=} = APRN G4
Ben Sherman Type-directed search with dependent types



Strategy for defining type containment

@ Define a partial order > on types such that the resulting equivalence
relation = is sound with respect to isomorphism
» sound: If A= B, then A is isomorphic to B

» But if A is isomorphic to B, no guarantee of any relation between A
and B

Ben Sherman Type-directed search with dependent types August 12, 2014 39 / 56



A definition of type containment in Haskell

e Type instantiation (with a concrete type)
» Maybe a > Maybe Int
» Show a = a — String > DBool — String
@ Swapping argument order
» A= B—-C = B—-A->C
@ “Inlining” non-recursive types which have a single constructor
» data (,) a b where (,) - a - b — (a, b)
» (a, b) ¢ =2 a—=b—oc

Ben Sherman Type-directed search with dependent types August 12, 2014 40 / 56



Canonical forms

@ Take advantage of structural properties
» Ay —» - — A, — B becomes {Ay,...,A,} — B, where {-} represents
a multiset.
» Reduce complexity of comparing arguments from n! to
Yiyi=3n(n+1)
» Similar for products (i.e. n-tuples) and sums (e.g., nested Eithers)

Ben Sherman Type-directed search with dependent types August 12, 2014 41 / 56



Towards dependent types

@ Type isomorphism-based searched is most valuable in a language like

Idris; the types are so informative!

@ Closely tied to automated theorem proving, automatic program

synthesis

Ben Sherman Type-directed search with dependent types August 12, 2014 42 / 56



Towards dependent types

Possible issues:

@ Distinct type variables may be dependent on one another!
» (a: Type) —» (x:a) > x=x
» Can't always swap argument order!

* (n : Nat) — (- : Finn) — Fin (S n)

@ Functions in type signatures not always bijective
» fromList : (1 : List a) — Vect (length 1) a
» (1 : List a) — Vect (length 1) a =" Vect 10 a

@ Pervasive use of implicit arguments

Ben Sherman Type-directed search with dependent types August 12, 2014 43 / 56



Matching types

@ fact 5 =100
Q@ 120 =100

No results!

o & E DA
Ben Sherman Type-directed search with dependent types



Matching types

Q@ fact 5 =120
Q@ 120 =120
@ (n: Nat) >n=n

QO (t : Type) > (n:t) > n=n

rrefl T x=x

[m] = =

Ben Sherman Type-directed search with dependent types



Matching types

(Ord a, Ord b, Eq ¢) = ((a, b), ¢) — ((a, b), ¢) — Bool
(Ord a, Eq b, Eq ¢) = ((a, b), ¢) — ((a, b), ¢) — Bool
(Eq a, Eq b, Eq ¢) = ((a, b), ¢) = ((a, b), ¢) = Bool
(Eq (a, b), Eqc) = ((a, b), ¢) = ((a, b), ¢) — Bool
Eq ((a, b), ¢) = ((a, b), ¢) = ((a, b), ¢) = Bool
Eqt =t — t — Bool

Ben Sherman Type-directed search with dependent types August 12, 2014 46 / 56



Demo

o & = E DA
Sherman Type-directed search with dependent types



Beating Hoogle

HOOgAe (Ord a, Ord b) => (a, b) -> (a, b) -> B¢ | Search

(Ord a, Ord b) => (a, b) -> (a, b) -> Bool

Packages equal :: (Eq a, Eq b, Graph gr) =>grab ->gr ab -> Bool
Sfgl@® fgl Data.Graph.Inductive.Graph
= OpenGL i+

WeightedProperties :: (GLfloat, v) -> (GLfloat, v) -> (GLfloat, v) ->
(GLfloat, v) -> WeightedProperties v

OpenGL Graphics.Rendering.OpenGL.GLU.Tessellation

Triangle :: (TriangleVertex v) -> (TriangleVertex v) -> (TriangleVertex v) -
> Triangle v

OpenGL Graphics.Rendering.OpenGL.GLU.Tessellation

Ben Sherman Type-directed search with dependent types August 12, 2014 48 / 56



“Kind" search for free

Hoog\e - Searh

* *

>

Parse error: (line 1, column 2): unexpected " " expecting letter

For information on what queries should look like, see the user manual.

Ben Sherman Type-directed search with dependent types August 12, 2014 49 / 56



The algorithm

Roughly 4 stages:
@ Match the return type
@ Match the argument types
@ Introduce (eliminate) a subset of the typeclasses

© Match the typeclasses

Ben Sherman Type-directed search with dependent types August 12, 2014 50 / 56



The state

Current (possibly altered) forms of:
@ Arguments yet to be resolved for the left type and right type
@ Typeclass constraints yet to be resolved for the left type and right
type
@ A record of the types of transformations which have been done so far

(for keeping score)

Ben Sherman Type-directed search with dependent types August 12, 2014 51 / 56



The state transition machine

o For each type, nextSteps :: State — [State]

o isFinal :: State —> Bool tells us when we are done
o “two-level” Dijkstra's algorithm:

© Which type should | be working on right now?
@ Which state should | call nextSteps on?

Ben Sherman Type-directed search with dependent types August 12, 2014 52 / 56



Matching arguments

@ Construct a directed acyclic graph representing the argument

dependencies

@ Try matching one argument from each type (with unification), only
considering arguments which don't appear in the types of other

arguments

@ Make sense of the unification result (a ~ f b), remove variables which
are completely determined, and convert the types in the appropriate

places

@ Repeat until all arguments are matched

Ben Sherman Type-directed search with dependent types August 12, 2014 53 / 56



Matching typeclasses

@ Try to match a typeclass constraint from one type with a constraint
from the other

@ If there are no such matches, then try replacing a typeclass constraint
with an instance, as long as the instance doesn't introduce new

variables

Ben Sherman Type-directed search with dependent types August 12, 2014 54 / 56



Possible improvements

@ Produce the corresponding “data” for the search results

Inlining non-recursive datatypes

@ Find isomorphic datatypes
@ Bake in usage of the Iso typeclass

> A safe way to make :search automatically user-extensible!

@ Find an admissible heuristic for type matching scores and use A*

Be less hacky with typeclasses

Ben Sherman Type-directed search with dependent types August 12, 2014 55 / 56



Pi in the sky

e Big database of libraries (with code that feels like programs and code
that feels like proofs)
@ Type-driven development

@ Search the types you must implement; if there's a result, use the

library with confidence that it meets the specification

Ben Sherman Type-directed search with dependent types August 12, 2014 56 / 56



