
Type-directed search with dependent types

Ben Sherman

August 12, 2014

Ben Sherman Type-directed search with dependent types August 12, 2014 1 / 56

Overview

Type systems

Code & type search

Equality and isomorphism

:search in Idris

Ben Sherman Type-directed search with dependent types August 12, 2014 2 / 56

Expressiveness of type systems

Inexpressive

��
Expressive

· Python

· C

· ML

· Haskell

· Idris, Agda

Ben Sherman Type-directed search with dependent types August 12, 2014 3 / 56

Python

Untyped: can’t determine anything important statically

There are

I Objects: ∗
I n-ary functions on objects: ∗n → ∗

Ben Sherman Type-directed search with dependent types August 12, 2014 4 / 56

C

“What’s the worst a function can do that takes a void ∗ and returns a

void ∗?”

1 void ∗ id(void ∗ x) {
2 strcpy((char ∗) x, ”Bye, bye, data!”);

3 strcpy((char ∗) &x, ”Bye, bye, stack!”);

4 return (void ∗) rand();

5 }

Ben Sherman Type-directed search with dependent types August 12, 2014 5 / 56

ML

“With parametric polymorphism, id can only be one thing!”

1 val id = (fn x => (

2 print ”Starting evil ... ”;

3 (∗ Doing evil ... ∗)
4 print ”Finishing evil ... ”;

5 x)) : (’a −> ’a);

Ben Sherman Type-directed search with dependent types August 12, 2014 6 / 56

Haskell

“In a purely functional language, id can only be one thing!”

1 id :: a −> a

2 id = id

Ben Sherman Type-directed search with dependent types August 12, 2014 7 / 56

Idris

In a total language, we finally win!

1 total

2 id : (a : Type) −> a −> a

3 id x = x

Ben Sherman Type-directed search with dependent types August 12, 2014 8 / 56

Programming language power

What you can know

W
h

at
yo

u
ca

n
d
o

Ben Sherman Type-directed search with dependent types August 12, 2014 9 / 56

Test-driven development

http://math.stackexchange.com/questions/111440/examples-of-apparent-

patterns-that-eventually-fail?lq=1

Ben Sherman Type-directed search with dependent types August 12, 2014 10 / 56

Termination checking with tests?

The busy beaver function

0 0

1 1

2 6

3 21

4 107

5 > 47, 176, 870

6 > 1036534

Ben Sherman Type-directed search with dependent types August 12, 2014 11 / 56

Proving map fusion

Ben Sherman Type-directed search with dependent types August 12, 2014 12 / 56

The Curry-Howard correspondence

Haskell Logic

type variables : a proposition variables : p

types : Bool propositions : “Socrates is a man”

function types : a −> b implications (implies) : p → q

tuples : (a, b) conjunctions (and) : p ∧ q

either : Either a b disjunctions (or) : p ∨ q

type inhabitation : id :: a −> a truth : ` p → p

The type is the what. The value is the why.

Ben Sherman Type-directed search with dependent types August 12, 2014 13 / 56

For any positive integers n, x , y and z where n is greater than 2,

xn + yn 6= zn.

∀n, x , y , z ∈ N.

n > 2, x > 0, y > 0, z > 0 → xn + yn 6= zn

1 (n, x, y, z : Nat) →
2 n > 2 → x > 0 → y > 0 → z > 0

3 → Not (xˆn + yˆn = zˆn)

Ben Sherman Type-directed search with dependent types August 12, 2014 14 / 56

Sorting a list

Haskell:

1 sort :: Ord a ⇒ [a] → [a]

Idris (my example, > 150 LOC):

1 quickSort : {a : Type} → {less : a → a → Type}
2 → {eq : a → a → Type}
3 → TotalOrder less eq

4 → (xs : List a)

5 → Exists (List a) (\ys ⇒ (IsSorted less ys, Permutation xs ys))

Ben Sherman Type-directed search with dependent types August 12, 2014 15 / 56

Type-driven development

Types

Prove properties stronger than any test can show

Are documentation that is never wrong or outdated

Provide an exact specification

Ben Sherman Type-directed search with dependent types August 12, 2014 16 / 56

Type-driven development

Ben Sherman Type-directed search with dependent types August 12, 2014 17 / 56

Why code search matters

Stand on the shoulders of giants

I Modern software development heavily depends on library re-use

Number of libraries increasing drastically

Code size of projects increasing drastically

(Purely) functional programming is the modular solution for scaling to

large systems

Ben Sherman Type-directed search with dependent types August 12, 2014 18 / 56

Search difficulties

“Haskell stack overflow”, “Go tree”, “Go map”

Ord (Haskell) vs. Comparable (Java)

I (In Java, all identifiers must have at least 8 characters?)

Ben Sherman Type-directed search with dependent types August 12, 2014 19 / 56

Search

What’s in a name? that which we call a rose

By any other name would smell as sweet;

William Shakespeare, Romeo and Juliet

Ben Sherman Type-directed search with dependent types August 12, 2014 20 / 56

Type-directed search

Can choose your name; can’t choose your type!

Semantics instead of names

Tool of choice for type-driven developers

Ben Sherman Type-directed search with dependent types August 12, 2014 21 / 56

Hoogle

Type-directed search for Haskell

2000 searches per day (2011)

Based on a notion of edit distance

Ben Sherman Type-directed search with dependent types August 12, 2014 22 / 56

Hoogle mutations

Aliases String ←→ [Char]

Instances Ord a ⇒ a ←→ a

Subtyping Num a ⇒ a ←→ Int

“Boxing” a ←→ Applicative f ⇒ f a

Free variable duplication (a, b) ←→ (a,a)

Restriction m a ←→ [a]

Argument deletion a → b → c ←→ b → c

Argument reordering

Ben Sherman Type-directed search with dependent types August 12, 2014 23 / 56

Distinction without a difference

Even though a → b → c and (a, b) → c are distinct types, they

“mean the same thing.”

When we search one type, we’d like to match both!

What can we use to capture this notion?

Ben Sherman Type-directed search with dependent types August 12, 2014 24 / 56

Type isomorphism

Definition

Types A and B are isomorphic if there are functions f : A→ B and

g : B → A such that (x : A)→ (g ◦ f)(x) = x and

(y : B)→ (f ◦ g)(y) = y , and we write A ∼= B.

Proposition

Isomorphism (∼=) is an equivalence relation.

(Type equivalence in HoTT)

What does = mean?

Ben Sherman Type-directed search with dependent types August 12, 2014 25 / 56

Notions of equality

In Haskell, not all types allow their terms to be compared for equality

(e.g., IO ())

In Idris, in order to perform type checking, for any arbitrary type, we

must be able to compare terms of that type for equality!

Ben Sherman Type-directed search with dependent types August 12, 2014 26 / 56

Equality in Idris

Definitional equality, ≡, for when terms are “obviously” equal

I Used for type checking

Propositional equality

I (=) : (x : A) → (y : B) → Type where

I refl : {A : Type} → {x : A} → x = x

Transport

I replace : a = b → P a → P b

Ben Sherman Type-directed search with dependent types August 12, 2014 27 / 56

Equality of functions

Axiom of function extensionality:

1 funext : (f , g : a → b) −> ((x : a) → f x = g x) → f = g

Ben Sherman Type-directed search with dependent types August 12, 2014 28 / 56

Type isomorphism

Proposition

If types A ∼= B, and t : Type ` M : Type, then [A/t]M ∼= [B/t]M.

Proof.

Suppose we have p : [A/t]M and want q : [B/t]M. Intuitively, when we

need to produce a B in q, we use code from p to make an A and then

map it to B. When we must use a B in a, we map it to A and then use

code from p to use that value.

Ben Sherman Type-directed search with dependent types August 12, 2014 29 / 56

Type isomorphism

Type isomorphism is similar to set bijection:

Proposition

If there is some n ∈ N such that A and B each have n elements, then A

and B are isomorphic.

Proof.

Construct isomorphisms from A to Fin n and B to Fin n . Since ∼= is an

equivalence relation, A ∼= Fin n ∼= B.

Ben Sherman Type-directed search with dependent types August 12, 2014 30 / 56

Type isomorphism in Haskell

1 A = X → Y → Z

2 B = (X, Y) → Z

3 f = uncurry

4 g = curry

Ben Sherman Type-directed search with dependent types August 12, 2014 31 / 56

Decidability of isomorphism

Proposition

Type isomorphism is undecidable in System F (Haskell) and intuitionistic

type theory (Idris).

Proof.

Claim: A type is isomorphic to ⊥ if and only if it is uninhabited.

Type inhabitation is undecidable in System F and intuitionistic type

theory.

Ben Sherman Type-directed search with dependent types August 12, 2014 32 / 56

Another notion of isomorphism

x = y

x ∼= y

f : A→ B

g : B → A

: (x : A)→ (g ◦ f)(x) ∼= x

: (y : B)→ (f ◦ g)(y) ∼= y

A ∼= B

Ben Sherman Type-directed search with dependent types August 12, 2014 33 / 56

Isomorphism is not enough!

Suppose we want to compare two values whose type has instance Ord for

equality. We search

1 Ord a ⇒ a → a → Bool

We’d like to find

1 (==) :: Eq a ⇒ a → a → Bool

Its type is strictly more general than what we asked for.

Ben Sherman Type-directed search with dependent types August 12, 2014 34 / 56

Isomorphism is not enough!

1 Ord a ⇒ a → a → Bool

If we take this too far, though, results may not be useful:

1 const (const True) :: a → a → Bool

Too general!

Ben Sherman Type-directed search with dependent types August 12, 2014 35 / 56

Type containment

We want a partial order � that defines isomorphism: that is,

If A � B and B � A, then A ∼= B.

Ben Sherman Type-directed search with dependent types August 12, 2014 36 / 56

A first pass at type containment

Definition

Type A covers B if there is a subset A′ ⊆ A and functions f : A′ → B and

g : B → A′ such that g ◦ f = idA′ and f ◦ g = idB , and we write A � B.

Ben Sherman Type-directed search with dependent types August 12, 2014 37 / 56

Proposition

If A � B and B � A, then A ∼= B.

Proof.

Myhill isomorphism theorem?

Ben Sherman Type-directed search with dependent types August 12, 2014 38 / 56

Strategy for defining type containment

Define a partial order � on types such that the resulting equivalence

relation ∼= is sound with respect to isomorphism

I sound: If A ∼= B, then A is isomorphic to B

I But if A is isomorphic to B, no guarantee of any relation between A

and B

Ben Sherman Type-directed search with dependent types August 12, 2014 39 / 56

A definition of type containment in Haskell

Type instantiation (with a concrete type)

I Maybe a � Maybe Int

I Show a ⇒ a → String � Bool → String

Swapping argument order

I A → B → C ∼= B → A → C

“Inlining” non-recursive types which have a single constructor

I data (,) a b where (,) :: a → b → (a, b)

I (a, b) → c ∼= a → b → c

Ben Sherman Type-directed search with dependent types August 12, 2014 40 / 56

Canonical forms

Take advantage of structural properties

I A1 → · · · → An → B becomes {A1, . . . ,An} → B, where {·} represents

a multiset.

I Reduce complexity of comparing arguments from n! to∑n
i=1 i = 1

2n(n + 1)

I Similar for products (i.e. n-tuples) and sums (e.g., nested Eithers)

Ben Sherman Type-directed search with dependent types August 12, 2014 41 / 56

Towards dependent types

Type isomorphism-based searched is most valuable in a language like

Idris; the types are so informative!

Closely tied to automated theorem proving, automatic program

synthesis

Ben Sherman Type-directed search with dependent types August 12, 2014 42 / 56

Towards dependent types

Possible issues:

Distinct type variables may be dependent on one another!

I (a : Type) → (x : a) → x = x
I Can’t always swap argument order!

F (n : Nat) → (: Fin n) → Fin (S n)

Functions in type signatures not always bijective

I fromList : (l : List a) → Vect (length l) a

I (l : List a) → Vect (length l) a �? Vect 10 a

Pervasive use of implicit arguments

Ben Sherman Type-directed search with dependent types August 12, 2014 43 / 56

Matching types

1 fact 5 = 100

2 120 = 100

No results!

Ben Sherman Type-directed search with dependent types August 12, 2014 44 / 56

Matching types

1 fact 5 = 120

2 120 = 120

3 (n : Nat) → n = n

4 (t : Type) → (n : t) → n = n

1 refl : x = x

Ben Sherman Type-directed search with dependent types August 12, 2014 45 / 56

Matching types

1 (Ord a, Ord b, Eq c) ⇒ ((a, b), c) → ((a, b), c) → Bool

2 (Ord a, Eq b, Eq c) ⇒ ((a, b), c) → ((a, b), c) → Bool

3 (Eq a, Eq b, Eq c) ⇒ ((a, b), c) → ((a, b), c) → Bool

4 (Eq (a, b), Eq c) ⇒ ((a, b), c) → ((a, b), c) → Bool

5 Eq ((a, b), c) ⇒ ((a, b), c) → ((a, b), c) → Bool

6 Eq t ⇒ t → t → Bool

Ben Sherman Type-directed search with dependent types August 12, 2014 46 / 56

Demo

Ben Sherman Type-directed search with dependent types August 12, 2014 47 / 56

Beating Hoogle

Packages
fgl
OpenGL

(Ord a, Ord b) => (a, b) -> (a, b) -> Bool

Search

(Ord a, Ord b) => (a, b) -> (a, b) -> Bool

equal :: (Eq a, Eq b, Graph gr) => gr a b -> gr a b -> Bool
fgl Data.Graph.Inductive.Graph

WeightedProperties :: (GLfloat, v) -> (GLfloat, v) -> (GLfloat, v) ->
(GLfloat, v) -> WeightedProperties v

OpenGL Graphics.Rendering.OpenGL.GLU.Tessellation

Triangle :: (TriangleVertex v) -> (TriangleVertex v) -> (TriangleVertex v) -
> Triangle v

OpenGL Graphics.Rendering.OpenGL.GLU.Tessellation

Instant is off Manual haskell.org

© Neil Mitchell 2004-2013, version 4.2.26

Ben Sherman Type-directed search with dependent types August 12, 2014 48 / 56

“Kind” search for free

* -> *

Search

* -> *

Parse error: (line 1, column 2): unexpected " " expecting letter

For information on what queries should look like, see the user manual.

Instant is off Manual haskell.org

© Neil Mitchell 2004-2013, version 4.2.26

Ben Sherman Type-directed search with dependent types August 12, 2014 49 / 56

The algorithm

Roughly 4 stages:

1 Match the return type

2 Match the argument types

3 Introduce (eliminate) a subset of the typeclasses

4 Match the typeclasses

Ben Sherman Type-directed search with dependent types August 12, 2014 50 / 56

The state

Current (possibly altered) forms of:

Arguments yet to be resolved for the left type and right type

Typeclass constraints yet to be resolved for the left type and right

type

A record of the types of transformations which have been done so far

(for keeping score)

Ben Sherman Type-directed search with dependent types August 12, 2014 51 / 56

The state transition machine

For each type, nextSteps :: State → [State]

isFinal :: State −> Bool tells us when we are done

“two-level” Dijkstra’s algorithm:

1 Which type should I be working on right now?

2 Which state should I call nextSteps on?

Ben Sherman Type-directed search with dependent types August 12, 2014 52 / 56

Matching arguments

Construct a directed acyclic graph representing the argument

dependencies

Try matching one argument from each type (with unification), only

considering arguments which don’t appear in the types of other

arguments

Make sense of the unification result (a ∼ f b), remove variables which

are completely determined, and convert the types in the appropriate

places

Repeat until all arguments are matched

Ben Sherman Type-directed search with dependent types August 12, 2014 53 / 56

Matching typeclasses

Try to match a typeclass constraint from one type with a constraint

from the other

If there are no such matches, then try replacing a typeclass constraint

with an instance, as long as the instance doesn’t introduce new

variables

Ben Sherman Type-directed search with dependent types August 12, 2014 54 / 56

Possible improvements

Produce the corresponding “data” for the search results

Inlining non-recursive datatypes

Find isomorphic datatypes

Bake in usage of the Iso typeclass

I A safe way to make :search automatically user-extensible!

Find an admissible heuristic for type matching scores and use A*

Be less hacky with typeclasses

Ben Sherman Type-directed search with dependent types August 12, 2014 55 / 56

Pi in the sky

Big database of libraries (with code that feels like programs and code

that feels like proofs)

Type-driven development

Search the types you must implement; if there’s a result, use the

library with confidence that it meets the specification

Ben Sherman Type-directed search with dependent types August 12, 2014 56 / 56

